0n=0{n0}

a0=1{aR}

am×an=am+n{m,nQ}

am÷an=amn{a0}

(am)n=am×n

(ab)m=ambm

nam=amn

na×nb=nab

nanb=nab

mna=mna

a1=1a

am=1am

If am=an then m=n{a0,a±1}

If am=bm then m=0{ab}

Logarithms

If an=b then n=logab{a>0,a1,b>0}

Rather than remembering, you can derive the above from only two properties below. Start by applying logx to both sides of the equation an=b.

logamn=logam+logan

logamn=logamlogan

logamn=nlogam

logab=lognblogna

1logba=logab

log1ab=logab

logab×logba=1