Exponents and roots
0n=0{n≠0}
a0=1{a∈R}
am×an=am+n{m,n∈Q}
am÷an=am−n{a≠0}
(am)n=am×n
(ab)m=ambm
n√am=amn
n√a×n√b=n√ab
n√an√b=n√ab
m√n√a=mn√a
a−1=1a
a−m=1am
If am=an then m=n{a≠0,a≠±1}
If am=bm then m=0{a≠b}
Logarithms
If an=b then n=logab{a>0,a≠1,b>0}
Rather than remembering, you can derive the above from only two properties below. Start by applying logx to both sides of the equation an=b.
logamn=logam+logan
logamn=logam−logan
logamn=nlogam
logab=lognblogna
1logba=logab
log1ab=−logab
logab×logba=1