Terminology
PEMDAS: Parentheses / Exponentiation / Multiplication and Division / Addition and Subtraction
$\ a + b = c$
- Terms: $a$ and $b$
- Sum: $c$
- Operator: $+$
$\ a - b = c$
- Difference: $c$
$\ a \times b = a\cdot b = ab = c$
- Factors: $a$ and $b$
- Product: $c$
$\ a \div b = a / b = \frac{a}{b} = c$ remainder $d$
- Dividend/numerator: $a$
- Divisor/denominator: $b$
- Quotient: $c$
- Remainder: $d$
$\ \frac{1}{a} = b$
- Reciprocal of $a$: $b$
$\ a^b = c$
- Base: $a$
- Exponent/power: $b$
- Product: $c$
- $b$-th root of $c$: $a$
$\ \log_ab$
- Base: $a$
$\ ax^2 + bx + c = y$
- Constants: $a$, $b$, $c$
- Variables: $x$, $y$
- Coefficients: $a$, $b$
$\ f(x) = y$
- Function: $f$
- Input: $x$
- Output: $y$
- Inverse of function $f$: $f^{-1}(x)$
- Derivative of $f$ (“f prime of x”): $f^{\prime}(x)$
- Alternative notations for derivative: $f’(x) = \frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}x} = \dot{y}$
Number sets
\[\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}\]Symbol | Name | Examples | Closed operations |
---|---|---|---|
$\mathbb{N}^* = \mathbb{Z}^+$ | Counting numbers | $1,2,3$ | $+,\times,a^b$ |
$\mathbb{N}_0 = \mathbb{Z}^{\geq 0}$ | Natural numbers | $0,1,2,3$ | $+,\times,a^b$ |
$\mathbb{Z}$ | Integers | $\text{-}3,\text{-}2,\text{-}1,0,1,2,3$ | $+,\times,-$ |
$\mathbb{Q}$ | Rational numbers | $\text{-}\frac{1}{2},0,\frac{1}{2},0.\bar{7},0.\dot{8},1,3$ | $+,\times,-,\div$ |
$\mathbb{R}$ | Real numbers | $\text{-}1,0,\frac{1}{2},1,\sqrt{2},2,e,3,\pi$ | $+,\times,-,\div$ |
$\mathbb{C}$ | Complex numbers | $5+3i, 1+\sqrt{2}i$ | $+,\times,-,\div,a^b$ |
$\mathbb{R} \setminus \mathbb{Q}$ | Irrational numbers | $\pi, \sqrt{2}, e$ | |
$\mathbb{C} \setminus \mathbb{R}$ | Imaginary numbers | $\sqrt{-2},3i$ | |
$\mathbb{P}$ | Prime numbers | $2,3,5,7,11,127,2^{31}-1$ | |
Undefined functions/operations | $\frac{1}{0}, \tan{\frac{\pi}{2}}, \log{0}, \infty, 0^0$ |